Cloning and characterization of the heart muscle isoform of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) from crayfish.

نویسندگان

  • Dongdong Chen
  • Zhiping Zhang
  • Michele G Wheatly
  • Yongping Gao
چکیده

This paper describes the cloning and functional characterization of the heart muscle isoform of Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) from crayfish Procambarus clarkii. The complete crayfish heart SERCA, identified by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), consists of 4495 bp with a 3060 bp open reading frame, coding for 1020 amino acids. This isoform differs from the previously identified axial abdominal (tail) muscle SERCA solely in its C-terminal amino acids. The last nine amino acids of the tail muscle isoform are replaced by 27 hydrophobic amino acids in the heart isoform that have the potential to form an additional transmembrane domain. Consistent with other invertebrate studies, Southern blot analysis suggested that the heart and tail muscle isoforms are encoded from the same gene that is equally related to SERCA-1, -2 and -3 of vertebrates. The tissue distributions of these two isoforms have been assessed using isoform-specific probes and northern analysis. A cardiac-specific probe bound only to a 5.8 kb species in heart and had minimal cross-hybridization with 7.6 and 5.8 kb species in eggs and no hybridization with tail muscle. A tail-isoform-specific probe hybridized with a 4.5 kb species in tail muscle and cross-hybridized with a 4.5 kb species in eggs and 8.8 kb in heart muscle. Both isoforms are expressed in eggs suggesting that transcripts are formed early in development and are subsequently broadly expressed in all tissue types. Expression of the cardiac muscle SERCA isoform varied with the stage of moulting. Expression was high in intermoult and decreased in premoult. However, expression was restored rapidly in postmoult (within 2 days) unlike expression of tail muscle SERCA, which remained downregulated for weeks. Differences in contractility between the two muscle types in the postmoult period may explain these expression patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brown adipose tissue Ca2+-ATPase: uncoupled ATP hydrolysis and thermogenic activity.

In this report a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) was identified in rats brown adipose tissue. Electrophoretic analysis of brown fat microssomal protein yields a 110-kDa band that is reactive to SERCA 1 antibody but is not reactive to SERCA 2 antibodies. Nevertheless, the kinetics properties of the brown fat SERCA differ from the skeletal muscle SERCA 1 inasmuch they manifest a d...

متن کامل

The sarco-endoplasmic reticulum Ca2+ ATPase is required for development and muscle function in Caenorhabditis elegans.

The sarco-endoplasmic reticulum Ca(2+)-transport ATPase (SERCA) loads intracellular releasable Ca(2+) stores by transporting cytosolic Ca(2+) into the endoplasmic (ER) or sarcoplasmic reticulum (SR). We characterized the only SERCA homologue of the nematode Caenorhabditis elegans, which is encoded by the sca-1 gene. The sca-1 transcript is alternatively spliced in a similar mode as the vertebra...

متن کامل

Cysteine-674 of the sarco/endoplasmic reticulum calcium ATPase is required for the inhibition of cell migration by nitric oxide.

OBJECTIVES Nitric oxide inhibits smooth muscle cell migration after arterial injury, but the detailed mechanism is not fully understood. The sarco/endoplasmic reticulum calcium ATPase (SERCA) lowers cell Ca2+ by increasing intracellular Ca2+ uptake and inhibiting extracellular Ca2+ influx. Our previous studies showed that NO causes cyclic GMP-independent arterial relaxation by increasing SERCA ...

متن کامل

Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability.

Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of conditional mutations in the Drosophila S...

متن کامل

Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation

Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2002